Show simple item record

dc.contributor.authorQuinn, Rebecca
dc.date.accessioned2023-05-10 15:10:54 (GMT)
dc.date.available2023-05-10 15:10:54 (GMT)
dc.date.issued2023-05-10
dc.date.submitted2023-04-20
dc.identifier.urihttp://hdl.handle.net/10012/19437
dc.description.abstractRap-1 interacting factor 1 (Rif1) is a protein involved in telomere regulation, DNA replication and has more recently been found to mediate genomic stability by influencing the choice of DNA double-strand break (DSB) repair pathway. Rif1 and protein phosphatase 1 (PP1, Glc7 in budding yeast) prevent premature DNA replication initiation by maintaining dephosphorylation of the Mcm2-7 helicase, ensuring it remains inactive. Dbf4-dependent kinase (DDK) can counteract this at the onset of S phase by binding and phosphorylating Rif1 to prevent its interaction with PP1. It has recently been shown that Rif1 may similarly target PP1 to affect DSB repair pathway choice. However, the precise mechanisms involved remain unclear. To examine the importance of the interaction between Rif1 and Glc7 in determining DNA DSB repair pathway choice, a rif1 5A∆PPDSPP mutant has been created by deleting the Dbf4 binding motif on Rif1 (PPDSPP), which allows DDK to phosphorylate Rif1, and by mutating 5 cyclin-dependent kinase (CDK) phosphorylation sites to alanine (5A), located near the Glc7-binding site. Thus, this Rif1 mutant is not expected to be phosphorylated by DDK nor CDK, allowing Rif1-Glc7 to be constitutively active, resulting in an increase in Rif1-mediated Glc7 dephosphorylation activity. We find that this mutant is hypersensitive to DNA DSB-inducing agents and this sensitivity is partially rescued by abrogating the interaction between Rif1 and Glc7 through its conserved RVxF/SILK motifs. Partial rescue is additionally observed when Rif1 is unable to translocate to the inner nuclear membrane or bind to DNA ends at the DSB. Furthermore, upon DSB induction, less resection can be observed in this mutant strain, suggesting repair by the non-homologous end-joining (NHEJ) pathway. Through a series of experiments, this work demonstrates a role of Rif1 and Glc7, in the context of DNA DSBs, to promote repair by NHEJ.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleCharacterization of the Mechanistic Roles of Rif1-Glc7 in DNA Double-Strand Break Repair Pathway Choice in Saccharomyces cerevisiaeen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentBiologyen
uws-etd.degree.disciplineBiologyen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorDuncker, Bernard
uws.contributor.advisorDuncker, Bernard
uws.contributor.advisorDuncker, Bernard
uws.contributor.affiliation1Faculty of Scienceen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages