Pure pairs. VII. Homogeneous submatrices in 0/1-matrices with a forbidden submatrix

Loading...
Thumbnail Image

Date

2023-07

Authors

Scott, Alex
Seymour, Paul
Spirkl, Sophie

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

For integer n>0, let f(n) be the number of rows of the largest all-0 or all-1 square submatrix of M, minimized over all n x n 0/1-matrices M. Thus f(n)=O(log n). But let us fix a matrix H, and define fH(n) to be the same, minimized over all n x n 0/1-matrices M such that neither M nor its complement (that is, change all 0's to 1's and vice versa) contains H as a submatrix. It is known that fH(n) > EnC, where c,E > 0 are constants depending on H. When can we take c=1? If so, then one of H and its complement must be an acyclic matrix (that is, the corresponding bipartite graph is a forest). Korandi, Pach, and Tomon conjectured the converse, that fH(n) is linear in n for every acyclic matrix H; and they proved it for certain matrices H with only two rows. Their conjecture remains open, but we show fH(n) = n1-o(1) for every acyclic matrix H; and indeed there is a 0/1-submatrix that is either (n) x n1-o(1) x (n).

Description

Keywords

induced subgraph, homogeneous matrix, bipartite graph, pure pair

LC Keywords

Citation