UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Load-sharing and kinematics of the human cervical spine under multi-axial transverse shear loading: combined experimental and computational investigation

Loading...
Thumbnail Image

Date

2021-06

Authors

Whyte, Tom
Barker, Jeffrey
Cronin, Duane
Dumas, Genevieve
Nolte, Lutz-Peter
Cripton, Peter

Journal Title

Journal ISSN

Volume Title

Publisher

National Library of Medicine

Abstract

The cervical spine experiences shear forces during everyday activities and injurious events yet there is a paucity of biomechanical data characterizing the cervical spine under shear loading. This study aimed to 1) characterise load transmission paths and kinematics of the subaxial cervical spine under shear loading, and 2) assess a contemporary finite element cervical spine model using this data. Subaxial functional spinal units (FSUs) were subjected to anterior, posterior and lateral shear forces (200 N) applied with and without superimposed axial compression preload (200 N) while monitoring spine kinematics. Load transmission paths were identified using strain gauges on the anterior vertebral body and lateral masses and a disc pressure sensor. Experimental conditions were simulated with cervical spine finite element model FSUs (GHBMC M50 version 5.0). The mean kinematics, vertebral body strains and disc pressures were compared to experimental results. The shear force-displacement response typically demonstrated a toe region followed by a linear response, with higher stiffness in the anterior shear direction relative to lateral and posterior shear. Compressive axial preload decreased posterior and lateral shear stiffness and increased anterior shear stiffness. Load transmission patterns and kinematics suggest the facet joints play a key role in limiting anterior shear while the disc governs motion in posterior shear. The main cervical spine shear responses and trends are faithfully predicted by the GHBMC finite element cervical spine model. These basic cervical spine biomechanics and the computational model can provide insight into mechanisms for facet dislocation in high severity impacts, and tissue distraction in low severity impacts.

Description

This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in Journal of Biomechanical Engineering, and is available online at https://doi.org/10.1115/1.4050030

Keywords

cervical spine, biomechanics, ex vivo, shear, compression, load-sharing, kinematics

LC Keywords

Citation