Show simple item record

dc.contributor.authorDonganont, Mana
dc.date.accessioned2022-09-28 18:31:05 (GMT)
dc.date.available2023-09-29 04:50:05 (GMT)
dc.date.issued2022-09-28
dc.date.submitted2022-09-20
dc.identifier.urihttp://hdl.handle.net/10012/18838
dc.description.abstractA multi-agent system (MAS) is a dynamic system that consists of a group of interacting agents distributed over a network. In the past decades, the study of distributed coordination of multi-agent systems has been widely attracted by many groups of researchers such as mathematicians, engineers, physicists, and others. This is partly due to various applications in many areas, including spacecraft formation flying, multiple robot coordination, flocking, consensus or synchronization, cooperative control of vehicle formations, etc. As one of the most important problems in distributed coordination, consensus means that a group of agents achieves an agreement on a common value by designing the control law which is based on the information received by interacting with neighbors. There are many consensus methods that have been studied in recent years. Some problems focused on seeking the consensus of continuous-time (CT) multi-agent systems or discrete-time (DT) multi-agent systems, the others considered consensus problems on hybrid systems which are dynamical systems involving the interaction of continuous and discrete dynamics. Most consensus algorithms have been proposed for the multi-agent systems, but most results of consensus analysis are on the situation that all agents are continuous-time or discrete-time dynamic behavior. There are, however, some practical problems that the discrete-time and continuous-time dynamic agents coexist and interact with each other at the same time. Thus, it is reasonable to study consensus problems in such hybrid multi-agent systems (HMASs). Generally, the consensus protocols are designed to ensure that the states of all agents converge to a common value. However, up to date, in many practical problems, the states of agents may converge to prescribed ratios rather than a common value, such as compartmental mass-action systems, water distribution systems, and multiscale coordination control between spacecrafts and their simulating vehicles on ground. To deal with this problem, the scaled consensus problem has been introduced, where all agents will converge to the assigned proportions. Different from the standard consensus, where a group of agents seek to agree on a common quantity depending on the states of agents, scaled consensus implies that the state of each agent will approach prescribed ratios in the asymptote. So this work aims to study the (scaled) consensus problems in hybrid multi-agent systems under fixed and switching topologies including linear and nonlinear dynamics. Furthermore, we study consensus problems with communication delays, external perturbations, finite-time (scaled) consensus problems and also apply to the random networks.-en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.relation.uri-en
dc.subjectconsensusen
dc.subjectscaled consensusen
dc.subjecthybrid multi-agent systemsen
dc.subjectimpulsive consensus protocolsen
dc.titleConsensus Problems in Hybrid Multi-Agent Systemsen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorLiu, Xinzhi
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages