Show simple item record

dc.contributor.authorVibien, Philippe
dc.date.accessioned2022-08-26 18:53:51 (GMT)
dc.date.issued2022-08-26
dc.date.submitted2022-08-21
dc.identifier.urihttp://hdl.handle.net/10012/18653
dc.description.abstractModern technological devices, ranging from the pedestrian smartphone to the highly specialized pacemaker, are increasingly dependent on miniaturized electronic components, such as integrated circuits, to accomplish their functions. To source these essential components, manufacturers rely on a complex and fractured global supply chain of distributors, brokers, and gray market intermediaries. The precipitous rise of counterfeit, compromised, or tampered devices being found within electronic supply chains over the past decade poses a threat to the trustworthiness, reliability, and correctness of the technologies that incorporate these components. Current techniques for detecting and mitigating these supply chain threats are unreliable, time-consuming, subjective in nature, and in some instances, cause permanent damage to the component under evaluation. In response to these concerns, this thesis proposes SilGeo, a system capable of rapidly verifying the authenticity of electronic components and assemblies by analyzing the device's intrinsic physical properties. Impedance discontinuities and wave propagation characteristics within the device are measured to create a hardware fingerprint, which is then used to determine the device's authenticity. The efficacy of SilGeo at detecting counterfeit microchips was evaluated alongside existing techniques as part of a case study focusing on the commonly counterfeited FT232RL microchip. From an experiment pool containing 260 FT232RL examples obtained from 9 different vendors across the globe, SilGeo was able to determine the authenticity of each microchip with 100% accuracy, correctly identifying a total of 119 counterfeit devices in the experiment pool.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjecthardware securityen
dc.subjectsupply chain securityen
dc.subjecthardware fingerprintingen
dc.subjectcounterfeit detectionen
dc.titleSilGeo: A Method for the Detection of Counterfeit, Compromised, or Tampered Electronic Devicesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms2 yearsen
uws.contributor.advisorFischmeister, Sebastian
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws-etd.embargo2024-08-25T18:53:51Z
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages