UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Evaluation of regression-based 3-D shoulder rhythms

Loading...
Thumbnail Image

Date

2016-08

Authors

Xu, Xu
Dickerson, Clark R.
Lin, Jia-hua
McGorry, Raymond W.

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

The movements of the humerus, the clavicle, and the scapula are not completely independent. The coupled pattern of movement of these bones is called the shoulder rhythm. To date, multiple studies have focused on providing regression-based 3-D shoulder rhythms, in which the orientations of the clavicle and the scapula are estimated by the orientation of the humerus. In this study, six existing regression-based shoulder rhythms were evaluated by an independent dataset in terms of their predictability. The datasets include the measured orientations of the humerus, the clavicle, and the scapula of 14 participants over 118 different upper arm postures. The predicted orientations of the clavicle and the scapula were derived from applying those regression-based shoulder rhythms to the humerus orientation. The results indicated that none of those regression-based shoulder rhythms provides consistently more accurate results than the others. For all the joint angles and all the shoulder rhythms, the RMSE are all greater than 5°. Among those shoulder rhythms, the scapula lateral/medial rotation has the strongest correlation between the predicted and the measured angles, while the other thoracoclavicular and thoracoscapular bone orientation angles only showed a weak to moderate correlation. Since the regression-based shoulder rhythm has been adopted for shoulder biomechanical models to estimate shoulder muscle activities and structure loads, there needs to be further investigation on how the predicted error from the shoulder rhythm affects the output of the biomechanical model.

Description

The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jelekin.2015.07.005. © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

thoracohumeral joint, shoulder kinematics, ISB recommendations

LC Keywords

Citation