UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Path Following for Mobile Manipulators

Loading...
Thumbnail Image

Date

2017-07-25

Authors

Gill, Rajan
Kulic, Dana
Nielsen, Christopher

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

This paper presents a framework of path following via set stabilization for mobile manipulator systems. The mobile manipulator is modelled as a single redundant dynamic system. The mobile base considered belongs to a large class of wheeled ground vehicles, including those with nonholonomic constraints. Kinematic redundancies are resolved by designing a controller that solves a suitably defined constrained quadratic optimization problem, which can be easily tuned by the designer to achieve various desired poses. By employing partial feedback linearization, the proposed path following controller has a clear physical meaning. The desired path to be followed is a spline in the output space of the system. The controller simultaneously controls the manipulator and mobile base. The result is a unified path following controller without any trajectory planning performed on the mobile base. The approach is experimentally verified on a 4-degree-of-freedom (4-DOF) manipulator mounted on a differential drive mobile platform

Description

This is a post-peer-review, pre-copyedit version of an article published in Robotics Research. The final authenticated version is available online at: http://dx.doi.org/https://doi.org/10.1007/978-3-319-60916-4_30

Keywords

LC Keywords

Citation