Show simple item record

dc.contributor.authorTraore, Emile
dc.date.accessioned2021-08-27 15:19:25 (GMT)
dc.date.available2021-08-27 15:19:25 (GMT)
dc.date.issued2021-08-27
dc.date.submitted2021-08-24
dc.identifier.urihttp://hdl.handle.net/10012/17284
dc.description.abstractThe recently deployed fifth generation (5G) cellular networks represent a significant technological advancement over fourth generation (4G) networks. Specifically, new 5G frequency bands were allocated at sub-6 GHz and instantaneous signal bandwidths were increased to satisfy the rapidly growing needs for increased data rates. Furthermore, 5G uses more complex modulation schemes to improve spectrum efficiency. Finally, 5G introduced massive multiple input multiple output (MIMO), where multiple transceivers are used to direct the signal towards specific users, increasing channel capacity. Conventional power amplifiers (PAs) are not suitable for 5G applications due to the increased signal and system complexity. For example, the Doherty power amplifier (DPA) technique is popular since DPAs can efficiently amplify signals with complex modulation schemes, but conventional DPAs have narrow bandwidth and poor linearity that preclude their use in 5G systems. This motivated research into DPA bandwidth and linearity improvements for use in 5G networks. This work focuses on bandwidth and linearity enhancement for sub-6 GHz DPAs realized using discrete components on a printed circuit board (PCB). Bandwidth is improved using broadband architectures for the DPA output combiner network (OCN), the absorption of drain parasitics, and broadband input matching network (IMN) design. Linearity is enhanced by proper drain biasing network design, and careful selection of transistor source impedances. A 3.3–5.0 GHz DPA using these techniques is designed and fabricated. Under wideband modulated signal excitation, the DPA offers very good linearity with appropriate digital predistortion (DPD). A 2×2 array of DPAs is evaluated in fully digital MIMO setup using a 2×2 antenna array. The DPA array achieves excellent linearity characteristics under 100 MHz signals and use of dual-input single-output (DISO) DPD. The DPA remains the ideal choice in 5G MIMO systems when compared to the class AB PA since it can maintain a higher average drain efficiency and similar linearity.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subject5Gen
dc.subjectSub-6 GHzen
dc.subjectMultiple-input multiple-output (MIMO)en
dc.subjectPower amplifier (PA)en
dc.subjectDoherty PA (DPA)en
dc.subjectBroadbanden
dc.subjectLinearen
dc.titleBroadband Linearity-Enhanced Doherty Power Amplifier Design Techniques for 5G Sub-6 GHz Applicationsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorBoumaiza, Slim
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages