Show simple item record

dc.contributor.authorZhang, Xiaoyou
dc.date.accessioned2021-08-25 17:42:19 (GMT)
dc.date.available2021-08-25 17:42:19 (GMT)
dc.date.issued2021-08-25
dc.date.submitted2021-08-15
dc.identifier.urihttp://hdl.handle.net/10012/17261
dc.description.abstractRecently, many countries have proposed various plans to address the issue of climate change, and increasing the capacity of renewables is one of the major common components of such plans. The uncertainty and variability of generation, introduced by renewable energy sources (RESs), pose significant protection challenges to the power systems. Although many studies have identified the challenges associated with the protection of power systems with RESs and have proposed various algorithms to address these challenges, only a few of them comprehensively discuss all the protection challenges within one system. To begin with, a single test system is developed and used to illustrate the protection challenges and to provide a review of the existing protection schemes, which have been proposed in the literature to tackle the protection challenges associated with power systems with RESs. After introducing the protection challenges associated with the integration of RESs in the power system, this thesis focuses on the protection of transmission lines connected to doubly-fed induction generator (DFIG)-based wind turbine generators (WTGs). DFIG-based WTGs, or namely Type III WTGs, which connect to the power systems via reduced-size converters, raise additional protection challenges such as the maloperation of distance relays due to the frequency deviation of the current measurement caused by the short-circuit characteristics of the DFIGs, and the impact of the fault resistance on the calculated impedance. The protection challenge associated with the frequency deviation caused by the short-circuit characteristics of DFIG is further discussed in detail, and a modified permissive underreaching transfer trip (PUTT) scheme is presented to address the challenge. With the addition of a frequency tracking element, the modified scheme correctly prevents the maloperation of the distance elements during external faults and enables the trip of the relay during internal faults. Besides, the protection challenges associated with conventional distance relays at the terminal of DFIG-based WTGs that are caused by the fault resistance and the frequency deviation associated with the short-circuit characteristics of the DFIG, are addressed and investigated. A modified distance protection scheme is presented to address these protection challenges by using an averaging filter to correct the current phasors and removing the error term caused by the fault resistance in the measured impedance. Pure-fault circuits are used to calculate the pure-impedance of the WTG and pure-fault sequence networks are used to estimate the fault current flowing through the fault resistance. Simulation results show that, for various fault scenarios with different fault resistances, the developed modified distance protection scheme is able to accurately estimate the positive-sequence impedance between the fault and relay location, with fast operations.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjecttransmission linesen
dc.subjectpower system protectionen
dc.subjectwind turbine generatorsen
dc.subjectconverter-based resourcesen
dc.subjectdoubly-fed induction generatoren
dc.titleThe Protection of Transmission Lines Connected to DFIG-Based WTGsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorAzad, Sahar Pirooz
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages