UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Hybrid Bivouac: High-Modulus Composite Membranes for Portable Shelters

Loading...
Thumbnail Image

Date

2021-05-27

Authors

Croll, Jessie

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

This thesis explores an iterative modelling and fabrication process for fibre-based composites through the design of a lightweight, portable shelter for backpacking and mountaineering. Existing tent typologies compromise either lightness or strength, leaving users to choose between lightweight and minimal enclosures that require flat, dry land upon which to be pitched or bulky and robust shelter systems that can be suspended when a ground pitch is not an option. Designers’ ability to address these trade-offs with more complex solutions has been limited by the amount of time required to manufacture one-off prototypes and the cost of high-performance materials. This project demonstrates how a design process that combines computational modelling tools and low-fidelity physical prototypes can be used to optimize the flexible composite membrane of an ultralight tensile structure and increase the functional performance of subsequent high-fidelity physical prototypes. Modelling and fabrication methods from racing sail design — which rely on finite element analysis models to inform the placement of high modulus filaments — are adapted to simulate and fabricate an uncompromising and adaptive tent system. Through a fibre-based composite architecture, the application of this integrative fabrication approach can significantly improve the portability and mechanical strength of a wide range of lightweight shelters.

Description

Keywords

fibre architecture, tents, tensile structures, portable architecture, prototyping, parametric modelling, material investigation

LC Keywords

Citation