A Machine-Learning-Based Algorithm for Peptide Feature Detection from Protein Mass Spectrometry Data
Loading...
Date
Authors
Zeng, Xiangyuan
Advisor
Ma, Bin
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been widely used in proteomics. Two types of data, MS and MS/MS data, are produced in an LC- MS/MS experiment. The MS data contains signal peaks corresponding to the intact pep- tides in the samples being analyzed. However, research on protein mass spectrometry data has focused more on extracting information from MS/MS data than on MS data. To effectively utilize MS information, we propose a novel software tool, MSTracer, to detect peptide features from MS data. Two machine-learning-combined scoring functions were incorporated in the implementation: one for detecting the peptide features and another for assigning a quality score to each detected peptide feature. The software was compared with several other tools and demonstrated significantly better performance.