Show simple item record

dc.contributor.authorDzinic, Omar
dc.date.accessioned2021-02-17 21:07:27 (GMT)
dc.date.available2021-02-17 21:07:27 (GMT)
dc.date.issued2021-02-17
dc.date.submitted2021-02-08
dc.identifier.urihttp://hdl.handle.net/10012/16809
dc.description.abstractCrop simulation models (CSM) have been a method for decision makers to study the effects of crop management activities for predicting, planning, and improving crop growth for the past several decades. While the applicability and robustness of CSMs had been rapidly evolving, the methods of gathering input and validation data for CSMs has remained predominantly the same. However, the application of remote sensing technologies including remotely piloted aircraft systems (RPAS) and satellites for agricultural purposes has demonstrated the potential for automated rapid and high detail CSM validation data. This study evaluated the accuracy of validation data acquired using RPAS and satellite technologies when compared to CSM outputs and observed crop measurements. Imagery of an agricultural field was acquired throughout a growing season with the use of a multi-sensor RPAS and existing satellite missions. Field work was performed alongside the RPAS imagery acquisitions to collect input data for crop modelling and accuracy assessments. Using the acquired imagery, the crop height and leaf area index (LAI) values of crops in the field were estimated for multiple dates. The LAI was estimated using 1) a regression-based method and 2) a function of the fractional vegetation cover and the leaf angle distribution method. A CSM was run alongside the remote sensing to simulate crop height and LAI values. When the estimated values were compared to observed measurements, showing the RPAS-derived crop height values were significantly more accurate (RMSE=193.6 cm, RMSE=161.3 cm) than the satellite-derived crop heights values (RMSE=223.4 m, RMSE=117.1 m respectively) yet less accurate than the CSM crop heights values. The RPAS-derived LAI value accuracies (RMSE=0.42, RMSE=0.66) and satellite-derived LAI value accuracies (RMSE=0.56, RMSE=0.56) were similar but the RPAS was found to, on average, estimate LAI more accurately than the CSM. Overall, the RPAS methods showed moderate accuracy across both crop height and LAI estimations and was found to perform better than the CSM in some situations. Future work may include additional imagery acquisitions throughout a growing season to further test the accuracies of RPAS-derived estimates as well as integrating estimates directly into CSMs for validation purposes.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectrpasen
dc.subjectuaven
dc.subjectdroneen
dc.subjectcrop modelingen
dc.subjectleaf area indexen
dc.subjectlaien
dc.subjectremote sensingen
dc.subjectgeomaticsen
dc.subjectcrop heighten
dc.subjectgisen
dc.subjectsatelliteen
dc.subjectsentinelen
dc.titleEvaluating remotely piloted aircraft estimates of crop height and LAI against satellite and crop model outputsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentGeography and Environmental Managementen
uws-etd.degree.disciplineGeographyen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorRobinson, Derek
uws.contributor.affiliation1Faculty of Environmenten
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages