Show simple item record

dc.contributor.authorNguyen, Anh Duong 21:09:11 (GMT) 21:09:11 (GMT)
dc.description.abstractSince the release of Bitcoin in 2008, cryptocurrencies have attracted attention from academia, government, and enterprises. Blockchain, the backbone ledger in many cryptocurrencies, has shown its potential to be a data structure carrying information over the network securely without the need for a centralized trust party. In this thesis, I delve into the consensus protocols used in permissioned blockchains and analyze the sharding technique that aims to improve the scalability in blockchain systems. I discuss a permissioned sharded blockchain that I use to examine different methods to interleave blocks, referred to as strong temporal coupling and weak temporal coupling. I provide empirical experiments to show the roles of lightweight nodes in solving the scalability issues in sharded blockchain systems. The results suggest that the weak temporal coupling method performs worse than the strong temporal coupling method and is more susceptible to an increase in network latency. The results also show the importance of separating the roles of nodes and adding lightweight nodes to improve the performance and scalability of sharded blockchain systems.en
dc.publisherUniversity of Waterlooen
dc.titleUnderstanding Scalability Issues in Sharded Blockchainsen
dc.typeMaster Thesisen
dc.pendingfalse and Computer Engineeringen and Computer Engineeringen of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorGolab, Wojciech
uws.contributor.affiliation1Faculty of Engineeringen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages