Show simple item record

dc.contributor.authorYang, Xiaopeng
dc.contributor.authorDimitrov, Stanko 17:54:21 (GMT) 17:54:21 (GMT)
dc.descriptionThis is an Accepted Manuscript of an article published by Taylor & Francis in INFOR: Information Systems and Operational Research in 2017, available online:
dc.description.abstractCorporate failure prediction has drawn numerous scholars’ attention because of its usefulness in corporate risk management, as well as in regulating corporate operational status. Most research on this topic focuses on manufacturing companies and relies heavily on corporate assets. The asset size of manufacturing companies play a vital role in traditional research methods; Altman’s 𝑍 score model is one such traditional method. However, a limited number of researchers studied corporate failure prediction for nonmanufacturing companies as the operational status of such companies is not solely correlated to their assets. In this paper we use support vector machines (SVMs) and data envelopment analysis (DEA) to provide a new method for predicting corporate failure of nonmanufacturing firms. We show that using only DEA scores provides better predictions of corporate failure predictions than using the original, raw, data for the provided dataset. To determine the DEA scores, we first generate efficiency scores using a slack-based measure (SBM) DEA model, using the recent three years historical data of nonmanufacturing firms; then we used SVMs to classify bankrupt and non-bankrupt firms. We show that using DEA scores as the only inputs into SVMs predict corporate failure more accurately than using the entire raw data available.en
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen
dc.publisherTaylor & Francisen
dc.subjectsupport vector machine (SVM)en
dc.subjectdata envelopment analysis (DEA)en
dc.subjectcorporate failure predictionsen
dc.subjectnonmanufacturing firmsen
dc.subjectdata obfuscationen
dc.titleData Envelopment Analysis may Obfuscate Corporate Financial Data: Using Support Vector Machine and Data Envelopment Analysis to Predict Corporate Failure for Nonmanufacturing Firmsen
dcterms.bibliographicCitationXiaopeng Yang & Stanko Dimitrov (2017) Data envelopment analysis may obfuscate corporate financial data: using support vector machine and data envelopment analysis to predict corporate failure for nonmanufacturing firms, INFOR: Information Systems and Operational Research, 55:4, 295-311, DOI: 10.1080/03155986.2017.1282290en
uws.contributor.affiliation1Faculty of Engineeringen
uws.contributor.affiliation2Management Sciencesen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages