The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

Edge coloring multigraphs without small dense subsets

Loading...
Thumbnail Image

Date

2015-12-06

Authors

Haxell, P.E.
Kierstead, H.A.

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

One consequence of a long-standing conjecture of Goldberg and Seymour about the chromatic index of multigraphs would be the following statement. Suppose $G$ is a multigraph with maximum degree $\Delta$, such that no vertex subset $S$ of odd size at most $\Delta$ induces more than $(\Delta+1)(|S|-1)/2$ edges. Then $G$ has an edge coloring with $\Delta+1$ colors. Here we prove a weakened version of this statement.

Description

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

multigraphs, edge coloring, Goldberg's conjecture

LC Subject Headings

Citation