Show simple item record

dc.contributor.authorShahab, Mohamad T.
dc.date.accessioned2020-04-20 19:37:40 (GMT)
dc.date.available2020-04-20 19:37:40 (GMT)
dc.date.issued2020-04-20
dc.date.submitted2020-04-17
dc.identifier.urihttp://hdl.handle.net/10012/15766
dc.description.abstractAdaptive control is an approach used to deal with systems with uncertain or time-varying parameters. A classical adaptive controller typically consists of a linear time-invariant (LTI) control law together with a tuning mechanism which adjusts its parameters. Usually, though not exclusively, discrete-time adaptive controllers provide only asymptotic stability and possibly bounded-noise bounded-state stability; neither exponential stability nor a bounded noise gain is typically proven. Recently it has been shown that if we employ a parameter estimator based on the original Projection Algorithm together with projecting the parameter estimates onto a given compact and convex set, then the adaptive controller guarantees linear-like closed-loop behavior: exponential stability, a bounded noise gain and a convolution bound on the exogenous inputs. In this thesis, the overarching objective is to show that we can prove these same desirable linear-like properties in a wide range of adaptive control problems without the convexity assumption: the main idea is to use multiple estimators and a switching algorithm. Indeed, we show that those properties arise in a surprisingly natural way. We first prove a general result that exponential stability and a convolution bound on the closed-loop behavior can be leveraged to show tolerance to a degree of time-variations and unmodelled dynamics, i.e. such closed-loop properties guarantee robustness. After reviewing the original Projection Algorithm and introducing the reader to our slightly revised version, we turn our attention to controller design, with a focus on a non-convex set of plant uncertainty. As a starting point, we first consider first-order plants incorporating a simple switching algorithm. We then extend the approach to a class of nonlinear plants (which have stable zero dynamics); we consider both cases of convex and non-convex sets of parameter uncertainty. Afterwards, we turn to possibly non-minimum phase LTI plants; first we consider the stabilization problem for which we have two convex sets of uncertainty; then, we turn to the problem of tracking the sum of a finite number of sinusoids of known frequencies subject to an unknown plant order and a general compact set of uncertainty.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectadaptive controlen
dc.subjectswitching adaptive controlen
dc.subjectexponential stabilityen
dc.subjectrobust adaptive controlen
dc.subjectcontrol theoryen
dc.subjectprojection algorithmen
dc.subjectmulti-modelen
dc.subject.lcshAdaptive control systemsen
dc.subject.lcshControl theoryen
dc.titleA New Approach to Multi-Model Adaptive Controlen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorMiller, Daniel
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages