Investigation of Photon Interactions with Semiconductor Quantum Dot Devices for Quantum Communication Applications
Abstract
A major goal in the field of quantum communication is to achieve long-distance (>100 km) transmission of quantum information, which would allow for the formation of a global quantum network. Devices called 'quantum repeaters' will enable delicate quantum states to be transmitted over long distances without succumbing to the signal losses inherent in the use of optical fibres. This thesis presents my work on a new type of hybrid quantum repeater design, which will combine both the photonic and spin qubit platforms to achieve more robust and efficient quantum communication. The focus of this work is on the optical aspects of this 'photon-to-spin' system, specifically the development of a method for delivering fibre-coupled single photons through an optical fibre to a lateral quantum dot device in a dilution refrigerator while preserving their polarisation states.
Collections
Cite this version of the work
Jason Phoenix
(2020).
Investigation of Photon Interactions with Semiconductor Quantum Dot Devices for Quantum Communication Applications. UWSpace.
http://hdl.handle.net/10012/15514
Other formats
Related items
Showing items related by title, author, creator and subject.
-
Experimental prospects for detecting the quantum nature of spacetime
Corona Ugalde, Paulina (University of Waterloo, 2017-09-21)This thesis is concerned with advancing the confrontation between relativistic quantum information (RQI) and experiment. We investigate the lessons that some present-day experiments can teach us about the relationship ... -
Quantum Compression and Quantum Learning via Information Theory
Bab Hadiashar, Shima (University of Waterloo, 2020-12-21)This thesis consists of two parts: quantum compression and quantum learning theory. A common theme between these problems is that we study them through the lens of information theory. We first study the task of visible ... -
Transmitting Quantum Information Reliably across Various Quantum Channels
Ouyang, Yingkai (University of Waterloo, 2013-05-01)Transmitting quantum information across quantum channels is an important task. However quantum information is delicate, and is easily corrupted. We address the task of protecting quantum information from an information ...