Show simple item record

dc.contributor.authorGomez Cordova, Lucia 18:57:01 (GMT) 18:57:01 (GMT)
dc.description.abstractThis thesis is devoted to the study of scattering amplitudes using two non-perturbative approaches. In Part I we focus on a particular theory known as N = 4 Super-Yang-Mills in four spacetime dimensions. The scattering amplitudes in this theory are dual to the expectation value of null polygonal Wilson loops which can be computed non-perturbatively using integrability. The Wilson loop is decomposed into smaller polygons and computed as an evolution of the color flux tube of the theory, summing over all intermediate flux tube states. By a suitable generalization of the building blocks called pentagons we describe how this program can describe all helicity configurations of the amplitude. We also show how the contribution from all flux tube excitations can be resummed to reproduce the general kinematics result at weak coupling. In Part II we take a different approach and study the space of Quantum Field Theories (QFTs). We focus on two-dimensional theories with a mass gap and a global symmetry. By studying the consequences of unitarity, crossing symmetry and analyticity of the two-to-two scattering matrix element we are able to constrain the space of allowed QFTs. At the boundary of this space we find several interesting features of the S-matrices and identify various integrable points.en
dc.publisherUniversity of Waterlooen
dc.titleNon-perturbative approaches to Scattering Amplitudesen
dc.typeDoctoral Thesisen
dc.pendingfalse and Astronomyen of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorVieira, Pedro
uws.contributor.advisorMyers, Robert
uws.contributor.affiliation1Faculty of Scienceen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages