Show simple item record

dc.contributor.authorFrazer, Matthew Bentley
dc.date.accessioned2019-09-20 14:51:36 (GMT)
dc.date.available2019-09-20 14:51:36 (GMT)
dc.date.issued2019-09-20
dc.date.submitted2019-09-11
dc.identifier.urihttp://hdl.handle.net/10012/15091
dc.description.abstractAs the frequency and complexity of physical human-robot interaction (pHRI) increases, so does the need to understand the dynamics of this coupled system in real-time. For haptic displays, which provide information to our senses of touch and proprioception, information regarding the human impedance and intent can drastically improve transparency while maintaining operator safety. Numerous online impedance estimators have been proposed in the literature which make continuous approximations of the coupled dynamics available online, obviating the need for perturbations or cumbersome sensors. However, character- izing and validating the performance of these estimators for pHRI is challenging, since it requires precise knowledge of known, time-varying reference impedances. This thesis explores the characterization of online impedance estimators using two serial manipulators (known as the BURT system), coupled at their end effectors, to physically simulate pHRI. One acts as the human, displaying a reference impedance relative to a desired trajectory, while the other runs the estimation algorithm and tracks a perturbing trajectory. Several least-squared impedance estimation strategies from the literature are validated on the experimental setup, demonstrating its efficacy and utility. The importance of accounting for the desired human trajectory is highlighted, and future research to apply results from the field of human motor control is proposed. A bimanual circle-drawing sensorimotor experiment was also conducted with the BURT systsem. Visual feedback on the task performance was withdrawn from one hand at a time and relationships between subject handedness, visual feedback, tracing speed, and circu- larity were studied. Results show that the non-dominant hand tends to trace less circular trajectories than the dominant hand while both are visible, but inconsistent differences in circularity are present across participants when comparing the performance of each hand in its invisible condition. Both hands showed higher tracing speed when only a single hand was receiving visual feedback, and traced more slowly in the free visual condition.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectroboticsen
dc.subjecthuman-robot interactionen
dc.subjectadmittance controlen
dc.subjecthuman impedanceen
dc.titleOperator Impedance During Physical Human-Robot Interaction: Estimation and Validationen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorJeon, Soo
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages