Show simple item record

dc.contributor.authorGuiguer, Victor
dc.date.accessioned2019-08-02 19:06:34 (GMT)
dc.date.available2019-08-02 19:06:34 (GMT)
dc.date.issued2019-08-02
dc.date.submitted2101-07-25
dc.identifier.urihttp://hdl.handle.net/10012/14841
dc.description.abstractRemoval of sulphur from fossil fuels is important in order to avoid the emission of sulphur oxides into the atmosphere, exposure to which has negative health and environ- mental effects. Sulphur is removed from refinery petrochemical products via the Claus process which contains a waste heat boiler (WHB). These WHBs are exposed to extreme temperatures and corrosive conditions, yet they are expected to operate continuously for years at a time. Typically WHBs have been designed using empirical correlations and heuristics, but more recently using process and multiphysics simulation. In this work a proof of concept for the numerical simulation of a WHB and its protective insulation is demonstrated. Continuum multiphysics models for both shell and tube side of a WHB are developed. An iterative coupling method for the determination of steady-state numerical solution of these models is then used to simulate a sub-region of a typical WHB. Simulation results for the tube-side of the WHB predict both the temperature profile and nature of the turbulent energy transport in the inlet region, highlighting complex flow profiles. Simulations of the shell-side of the WHB predict the multiphase convective boiling behaviour in the bulk (far from wall effects). Finally, preliminary results of the coupled shell/tube configurations are presented and compared to previous results.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectmultiphysicsen
dc.subjectsimulationen
dc.subjecteuler-euleren
dc.subjectboilingen
dc.subjectturbulenceen
dc.titleIterative Coupled Shell/Tube Simulation of Waste Heat Boilers using Computational Multiphysicsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorAbukhdeir, Nasser Mohieddin
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages