Some users are experiencing upload errors at the moment. If you receive a "UWSpace is down for maintenance" error, please email as soon as possible. We are very sorry for the inconvenience.

Show simple item record

dc.contributor.authorTolami Hemmati, Sahar
dc.contributor.authorLi, Ge
dc.contributor.authorWang, Xiaolei
dc.contributor.authorDing, Yuanli
dc.contributor.authorPei, Yu
dc.contributor.authorYu, Aiping
dc.contributor.authorChen, Zhongwei 16:06:37 (GMT) 16:06:37 (GMT)
dc.descriptionThe final publication is available at Elsevier via © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
dc.description.abstractHerein, a unique nitrogen-doped T-Nb2O5/tubular carbon hybrid structure in which T-Nb2O5 nanoparticles are homogeneously embedded in an in-situ formed nitrogen-doped microtubular carbon is synthesized, utilizing a facile and innovative synthesis strategy. This structure addresses the poor electron conductivity and rate capability that hinder T-Nb2O5's promise as an anode for Li-ion devices. Such a distinctive structure possesses a robust framework that has ultrasmall active nanocomponents encapsulated in highly conductive carbon scaffold with hollow interior and abundant voids, enabling fast electron/ion transport and electrolyte penetration. Moreover, nitrogen-doping not only ameliorates the electronic conductivity of the heterostructure, but also induces pseudocapacitance mechanism. When evaluated in a half-cell, the as-prepared material delivers a specific capacitance of 370 F g−1 at 0.1 A g−1 within 1–3 V vs. Li/Li+ and excellent cyclability over 1100 cycles. A high energy density of 86.6 W h kg−1 and high power density of 6.09 kW kg−1 are realized. Additionally, a capacitance retention as high as 81% after 3500 cycles is achieved in an Li-ion Capacitor (LIC) with activated carbon as the cathode and nitrogen-doped T-Nb2O5/tubular carbon as the anode.en
dc.description.sponsorshipNatural Sciences and Engineering Research Council University of Waterlooen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.subjectLi-ion intercalation pseudocapacitanceen
dc.subjectorthorhombic niobium oxideen
dc.subjectin-situ polymerizationen
dc.subjectnitrogen dopingen
dc.title3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitorsen
dcterms.bibliographicCitationThe final publication is available at Elsevier via © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
uws.contributor.affiliation1Faculty of Engineeringen
uws.contributor.affiliation2Chemical Engineeringen
uws.contributor.affiliation2Waterloo Institute for Nanotechnology (WIN)en
uws.contributor.affiliation2Waterloo Institute for Sustainable Energy (WISE)en

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages