Show simple item record

dc.contributor.authorLindzey, Nathan
dc.date.accessioned2018-12-20 14:45:01 (GMT)
dc.date.available2018-12-20 14:45:01 (GMT)
dc.date.issued2018-12-20
dc.date.submitted2018-11-23
dc.identifier.urihttp://hdl.handle.net/10012/14267
dc.description.abstractIn this thesis we investigate the algebraic properties of matchings via representation theory. We identify three scenarios in different areas of combinatorial mathematics where the algebraic structure of matchings gives keen insight into the combinatorial problem at hand. In particular, we prove tight conditional lower bounds on the computational complexity of counting Hamiltonian cycles, resolve an asymptotic version of a conjecture of Godsil and Meagher in Erdos-Ko-Rado combinatorics, and shed light on the algebraic structure of symmetric semidefinite relaxations of the perfect matching problemen
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectRepresentation Theoryen
dc.subjectExtremal Combinatoricsen
dc.subjectSymmetric Functionsen
dc.titleMatchings and Representation Theoryen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorCheriyan, Joseph
uws.contributor.advisorGodsil, Christopher
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages