UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Dissimilar joining of carbon/carbon composites to Ti6Al4V using reactive resistance spot welding

Loading...
Thumbnail Image

Date

2019-01-25

Authors

Shokati, Ali Akbar
Zhou, Norman Y.
Wen, John Z.

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

A 2D C/C composite with a high porosity (low strength) and a 3D C/C composite with a low porosity (high strength) were investigated for dissimilar joining to Ti6Al4V via reactive spot welding. It was determined that infiltration of melted metal into the composite and formation of a continuous thin TiC layer at the interface of the joints were the dominant joining mechanisms. The 2D C/C composite with a flat surface was successfully joined to Ti6Al4V due to the infiltration of the melted Ti6Al4V into its porous content. On the other hand, it was necessary to drill rectangular grooves onto the surface of the 3D C/C composite to facilitate the infiltration of the melted Ti into the composite, which produced high-strength joints. Surface patterning was determined to be necessary to join the components with mismatching coefficients of thermal expansion. The strength of the 2D C/C composite and Ti6Al4V joints was found to be 7 MPa, while the maximum strength of the groove-patterned 3D C/C composite and Ti6Al4V joints reached 46 MPa.

Description

The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.jallcom.2018.09.018 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

C/C composite, Dissimilar joining, Infiltration, Interfacial microstructure, Shear strength, Titanium alloy

LC Keywords

Citation