Show simple item record

dc.contributor.authorPawlega, Filip
dc.date.accessioned2018-09-20 14:46:23 (GMT)
dc.date.issued2018-09-20
dc.date.submitted2018-09-13
dc.identifier.urihttp://hdl.handle.net/10012/13840
dc.description.abstractPrivately Constrained Pseudorandom Functions allow a PRF key to be delegated to some evaluator in a constrained manner, such that the key’s functionality is restricted with respect to some secret predicate. Variants of Privately Constrained Pseudorandom Func- tions have been applied to rich applications such as Broadcast Encryption, and Secret-key Functional Encryption. Recently, this primitive has also been instantiated from standard assumptions. We extend its functionality to a new tool we call Privately Constrained Testable Pseudorandom functions. For any predicate C, the holder of a secret key sk can produce a delegatable key constrained on C denoted as sk[C]. Evaluations on inputs x produced using the constrained key differ from unconstrained evaluations with respect to the result of C(x). Given an output y evaluated using sk[C], the holder of the unconstrained key sk can verify whether the input x used to produce y satisfied the predicate C. That is, given y, they learn whether C(x) = 1 without needing to evaluate the predicate themselves, and without requiring the original input x. We define two inequivalent security models for this new primitive, a stronger indistinguishability- based definition, and a weaker simulation-based definition. Under the indistinguishability- based definition, we show the new primitive implies Designated-Verifier Non-Interactive Zero-Knowledge Arguments for NP in a black-box manner. Under the simulation-based definition, we construct a provably secure instantiation of the primitive from lattice as- sumptions. We leave the study of the gap between definitions, and discovering techniques to reconcile it as future work.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectcryptographyen
dc.titlePrivately Constrained Testable Pseudorandom Functionsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws-etd.embargo.terms1 yearen
uws.comment.hiddenSigned restriction form has been submitted to CS grad department.en
uws.contributor.advisorGorbunov, Sergey
uws.contributor.advisorJao, David
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws-etd.embargo2019-09-20T14:46:23Z
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages