Show simple item record

dc.contributor.authorDosi, Manan
dc.date.accessioned2018-08-17 15:47:00 (GMT)
dc.date.available2018-08-17 15:47:00 (GMT)
dc.date.issued2018-08-17
dc.date.submitted2018-08-15
dc.identifier.urihttp://hdl.handle.net/10012/13605
dc.description.abstractMethane is a potent greenhouse gas with significant, yet largely unknown, emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of low-cost, low-power electrochemical sensors could provide an inexpensive means to carry out distributed and easy sensing over the entire network and to identify leaks for rapid mitigation. In this work, a simple and cost-effective approach is proposed for developing electrochemical methane sensors which operate at room temperature with the highest reported sensitivity and response time. Laser-induced graphene (LIG) technology, which selectively carbonizes commercial polyimide films using a low-cost CO₂ laser cutting and patterning system is utilized. Interdigitated LIG electrodes are infiltrated with a dilute palladium (Pd) nanoparticle dispersion which distributes within and coats the high surface area LIG electrode. A pseudo-solid state electrolyte ionic liquid (IL)/polyvinylidene fluoride was painted onto the flexible cell resulting in a porous electrolyte structure which allows for rapid gas transport and improved three-phase contact between methane, IL and Pd. By subjecting the resulting sensors to methane in a gas flow cell, with off-gas analysis analyzed by Fourier transform infrared spectroscopy, the performance of the sensor over a wide range of operating conditions can be determined and the methane oxidation mechanism can be investigated. The optimized system provides a rapid response (less than 50 s) and high sensitivity (0.55 μA/ppm/cm²) enabling a ppb-level detection limit.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleDesign of a Solid-State Electrochemical Methane Sensor Based on Laser-Induced Grapheneen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorFowler, Michael
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages