Show simple item record

dc.contributor.authorChan, Kelvin Tian Yi 18:32:54 (GMT) 18:32:54 (GMT)
dc.description.abstractTransitive factorizations faithfully encode many interesting objects. The well-known ones include ramified coverings of the sphere and hypermaps. Enumeration of specific classes of such objects have been known for quite some time now. Hurwitz numbers, monotone Hurwitz numbers and hypermaps numbers were discovered using different techniques. Recently, Carrell and Goulden found a unified algebraic approach to count these objects in genus 0. Jucys-Murphy elements and centrality play important roles in establishing induction relations. Such a method is interesting in its own right. Its corresponding combinatorial decomposition is however intriguingly mysterious. Towards a understanding of direct combinatorial analysis of multiplication of arbitrary permutations, we consider methods, especially operators on symmetric functions, and related problems in symmetric groups.en
dc.publisherUniversity of Waterlooen
dc.subjectAlgebraic Combinatoricsen
dc.titleInduction Relations in the Symmetric Groups and Jucys-Murphy Elementsen
dc.typeMaster Thesisen
dc.pendingfalse and Optimizationen and Optimizationen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorGoulden, Ian
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages