Show simple item record

dc.contributor.authorCallaghan, William 18:27:42 (GMT) 18:27:42 (GMT)
dc.description.abstractIn this thesis, we present and evaluate a framework for combining machine learning algo- rithms, crowd workers, and experts in the classification of heart sound recordings. The development of a hybrid human-machine framework for heart sound recordings is moti- vated by the past success in utilizing human computation to solve problems in medicine as well as the use of human-machine frameworks in other domains. We describe the methods that decide when and how to escalate the analysis of heart sound recordings to different resources and incorporate their decision into a final classification. We present and discuss the results of the framework which was tested with a number of different machine classi- fiers and a group of crowd workers from Amazon’s Mechanical Turk. We also provide an evaluation of how crowd workers perform in various different heart sound analysis tasks, and how they compare with machine classifiers. In addition, we investigate how machine and human analysis are effected by different types of heart sounds and provide a strategy for involving experts when these methods are uncertain. We conclude that the use of a hybrid framework is a viable method for heart sound classification.en
dc.publisherUniversity of Waterlooen
dc.titleA Human-Machine Framework for the Classification of Phonocardiogramsen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorLaw, Edith
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages