UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Scalable image segmentation via decoupled sub-graph compression

Loading...
Thumbnail Image

Date

2018-06-01

Authors

Medeiros, Rafael Sachett
Wong, Alexander
Scharcanski, Jacob

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Dealing with large images is an on-going challenge in image segmentation, where many of the current methods run into computational and/or memory complexity issues. This work presents a novel decoupled sub-graph compression (DSC) approach for efficient and scalable image segmentation. In DSC, the image is modeled as a region graph, which is then decoupled into small sub-graphs. The sub-graphs undergo a compression process, which simplifies the graph, reducing the number of vertices and edges, while keeping the overall graph structure. Finally, the compressed sub-graphs are re-coupled and re-compressed to form a final compressed graph representing the final image segmentation. Experimental results based on a dataset of high resolution images (1000 × 1500) show that the DSC method achieves better segmentation performance when compared to state-of-the-art segmentation methods (PRI=0.84 and F=0.61), while having significantly lower computational and memory complexity.

Description

The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.patcog.2017.11.028 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Decoupling, Graph compression, Scalability, Segmentation

LC Keywords

Citation