Show simple item record

dc.contributor.authorDuhan, Jai
dc.date.accessioned2018-01-22 19:33:43 (GMT)
dc.date.available2018-01-22 19:33:43 (GMT)
dc.date.issued2018-01-22
dc.date.submitted2018-01-18
dc.identifier.urihttp://hdl.handle.net/10012/12925
dc.description.abstractAs agreed in the Paris Agreement, Canada is committed to combat climate change through reducing greenhouse gas (GHG) emissions and keeping the temperature rise well below 2° C above pre-industrial levels. One of the ways to achieve this goal is through replacing high GHG emitting electricity sources with renewables energy, such as wind and solar energy. However, due to their intermittent nature, wind and solar must be paired with energy storage to be a reliable source of electricity. Compressed air energy storage (CAES) in salt caverns is a well-demonstrated and effective grid-scale energy storage technology that can support large-scale integration of renewables. This thesis addresses on three major aspects of implementing CAES in Canada: I) geomechanical design workflow, II) CAES siting in salt caverns across Canada: a geomechanics perspective, and III) potential of deep brine disposal in southwestern Ontario. Part I of the thesis discusses the geomechanical design workflow for CAES in salt caverns. The workflow includes tasks and design decisions that are executed from a CAES project’s pre-feasibility period to end of operation period. The major sections of the workflow include geology, data collection and mechanical earth model, constitutive model: creep, geomechanical issues and cavern design decisions, and monitoring. The goal of this section is to identify and investigate high-level geological engineering tasks that should be considered when designing a salt cavern for CAES. Part II of the thesis entails a comprehensive study on the siting of CAES plants in salt caverns across Canada. The objective of the study was to develop an evaluation methodology and use it to determine suitable sites for CAES based on geology, renewable energy potential, energy demand, and existing infrastructure. Multi-criteria analysis was utilized as a tool to compare and evaluate sites. Six criteria are used in the evaluation framework: 1) depth to salt strata, 2) salt strata thickness, 3) renewable energy potential, 4) energy demand, 5) proximity to existing natural gas infrastructure, and 6) proximity to existing electrical infrastructure. The study will be useful to the government in developing energy policies, drafting regulations, and utilized by the industry in deciding the location for front-end engineering and design (FEED) studies. Part III of the thesis comprises of a study on the potential of deep brine disposal in southwestern Ontario. The aim of the study was to develop an evaluation methodology and investigate suitable sites for brine disposal in southwestern Ontario based on geological, geomechanical, and petrophysical parameters. A multi-criteria analysis evaluation system was developed based on relevant disposal parameters and applied to sites throughout southwestern Ontario. Criteria used in the study include permeability, porosity, depth, thickness, disposal formation lithology, and caprock lithology. The study will benefit industrial and academic readers to understand the parameters required for deep brine disposal and appreciate the availability of suitable locations for disposal in southwestern Ontario.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectsalt cavernsen
dc.subjectbrine disposalen
dc.subjectcompressed air energy storageen
dc.subjectgeomechanical design workflowen
dc.subjectmulti-criteria analysisen
dc.titleCompressed Air Energy Storage in Salt Caverns: Geomechanical Design Workflow, CAES Siting Study from a Geomechanics Perspective, and Deep Brine Disposalen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degree.disciplineCivil Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorDusseault, Maurice
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages