The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

Complexity Of Atoms Of Regular Languages

Loading...
Thumbnail Image

Date

2013-11-01

Authors

Brzozowski, Janusz
Tamm, Hellis

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publishing

Abstract

The quotient complexity of a regular language L, which is the same as its state complexity the number of left quotients of L. An atom of a non-empty regular language L with n quotients is a non-empty intersection of the n quotients, which can be uncomplemented or complemented. An NFA is atomic if the right language of every state is a union of atoms. We characterize all reduced atomic NFAs of a given language, i.e., those NFAs that have no equivalent states, We prove that, for any language L with quotient complexity n, the quotient complexity of any atom of L with r complemented quotients has an upper bound of 2(n) - 1 if r = 0 or r = n; for 1 <= r <= n - 1 the bound is 1+ (k=1)Sigma(r) (h=k+1)Sigma(k+n-r) ((n)(h)) ((h)(k)). For each n >= 2 we exhibit a language with 2(n) atoms which meet these bounds.

Description

Electronic version of an article published as International Journal of Foundations of Computer Science, 24(07), 2013, 1009–1027. http://dx.doi.org/10.1142/S0129054113400285 © World Scientific Publishing Company http://www.worldscientific.com/

Keywords

Atoms, finite automaton, atomic NFA, quotient complexity, regular language, state complexity, syntactic semigroup, witness

LC Subject Headings

Citation