Show simple item record

dc.contributor.authorWu, Siyuan
dc.date.accessioned2017-08-23 20:49:48 (GMT)
dc.date.available2017-08-23 20:49:48 (GMT)
dc.date.issued2017-08-23
dc.date.submitted2017-08-10
dc.identifier.urihttp://hdl.handle.net/10012/12186
dc.description.abstractOver the past decades, the quantum mechanical description of magnetic phenomena has been well developed. However, the first principle calculations of the physical properties of magnetic systems is still a challenge. One solution to the problem is to construct model magnetic Hamiltonians such that these Hamiltonians can well describe accurate energies of the low-lying magnetic states, starting from an ab initio Hamiltonian in a finite atomic orbital basis set. In the first part of this work, the multireference equation of motion coupled cluster (MREOM-CC) approach including spin-orbit coupling is applied to model magnetic systems FArO, FArOF and FArFOH. All low-lying magnetic states are obtained subsequently from a compact diagonalization of the transformed Hamiltonian in the MREOM-CC scheme. The accuracy of MREOM is shown to be comparable to the well-established multireference Configuration Interaction with singles and doubles and the Davidson Q correction (MRCISD+Q), but the MREOM approach is significantly more efficient for systems with a large number of electronic states. In the second part, we discuss the details of the effective Hamiltonian approach, proposed in this work. The purpose of this approach is to obtain low-lying states for a Hamiltonian that consists of pairwise interactions between magnetic sites only. The approach includes two steps: the definition of an effective Hamiltonian that acts in a compact space of low-lying single-site states obtained from a mean-field calculation, and the diagonalization of the effective Hamiltonian. The last step still limits the size of systems that can be tackled. Some variants of the effective Hamiltonian approach are tested in benchmark applications to model magnetic systems. The results indicate that this approach is promising, and finally we briefly discuss how this approach can be improved in the near future.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectModel magnetic Hamiltoniansen
dc.subjectMultireference equation of motion coupled cluster (MREOM-CC)en
dc.subjectSpin-orbit couplingen
dc.subjectEffective Hamiltonian approachen
dc.titleInvestigations of Magnetic Model Systems Using Coupled Cluster Based Approachesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentChemistryen
uws-etd.degree.disciplineChemistryen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws.contributor.advisorNooijen, Marcel
uws.contributor.affiliation1Faculty of Scienceen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages