An Intelligent Multi-stage Channel Acquisition Model for CR-WBANs: A Context Aware Approach

Loading...
Thumbnail Image

Date

2017-07-31

Authors

Elgadi, Refga

Advisor

Basir, Otman
Hilal, Allaa

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Cognitive Radio (CR) came as a solution to mitigate challenges that wireless body area networks (WBANs) suffer from. CR is an intelligence-based technology that senses, observes, and learns from its operating environment to access licensed bands in the spectrum when they are not being utilized by primary users. Deploying a CR technology in WBANs applications, enhances spectrum scalability, increases system robustness, and decreases latency. Accordingly, CR-WBANs help in building a more efficient and reliable ubiquitous healthcare system than conventional WBANs do. However, CR-WBANs are still evolving, and many challenges need to be investigated, in particular, is how to acquire a channel and prioritize data streams among multiple CR-users (i.e., multiple patients) based on the severity of their health status, in a manner to decrease network latency and increase network scalability. To address this challenge, this work proposes a novel intelligent channel acquisition model for multiple CR-WBANs within ubiquitous healthcare system, whereby contextual data, namely, channel properties, intra-node characteristics, and patients’ profile information, is integrated in channel acquisition decision process. The proposed work is a multi-stage fusion system that is composed of local and global decisions units. A fuzzy logic system is utilized to make decisions in the local unit, which are sensing the channel availability and assessing the severity of patients' health status. Moreover, a neural network is employed as a global sensing decision center, whereby local sensing decisions, channel properties, and intra-node characteristics are augmented in the decision process. Furthermore, a cluster-based heuristic algorithm is formulated, in the global decision unit, to prioritize data streams among CR-users based on the criticality of their health conditions (i.e., acute, urgent, and normal). Patients' local health assessments and avatars (e.g., age, medical history, etc.) are exploited in the prioritization process.

Description

Keywords

channel acquisition., hybrid cooperative spectrum sensing., data transmission prioritization., fuzzy logic., neural network., spectrum sensing accuracy, probability of channel acquisition.

LC Keywords

Citation