Show simple item record

dc.contributor.authorZaman, Atulan 15:59:04 (GMT) 15:59:04 (GMT)
dc.description.abstractMicrofluidics and lab-on-a-chip are a growing technology, influential in many areas of engineering. This project focuses on the necessity for better computer aided design tools for this area. Specifically, it focuses on the automated synthesis of T-junction components with thin-walled membranes for stability. A T-junction is a passive droplet generation component, common in microfluidics which suffers from behavior instability in highly integrated circuits with many components. One way of improving stability is using flexible membranes to mitigate pressure perturbations. This thesis describes the design process of such membranes so that a model can be used to synthesize stable T-junctions. The thesis also discusses Manifold, a software framework for automated synthesis of microfluidic circuits. This is the framework where the design process fits in. To compare the result of the software framework with the analytic model described, physical circuits were fabricated to validate the accuracy of the analytic model and the software. Besides the T-junction, another microfluidics component that was investigated was a “Capillary Electrophoresis Channel”. This component was also investigated with respect to automated synthesis and verification using the Manifold framework, and the details are discussed.en
dc.publisherUniversity of Waterlooen
dc.subjectDesign automationen
dc.subjectHardware synthesisen
dc.titleExploring Microfluidic Design Automation: Thin-wall Membrane Regulatoren
dc.typeMaster Thesisen
dc.pendingfalse and Computer Engineeringen and Computer Engineeringen of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorRayside, Derek
uws.contributor.affiliation1Faculty of Engineeringen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages