Show simple item record

dc.contributor.authorEaton, Edward
dc.date.accessioned2017-04-25 19:18:31 (GMT)
dc.date.available2017-04-25 19:18:31 (GMT)
dc.date.issued2017-04-25
dc.date.submitted2017-04-24
dc.identifier.urihttp://hdl.handle.net/10012/11745
dc.description.abstractA signature scheme is a fundamental component in modern digital communication. It allows for authenticated messages, without which it would be nearly impossible to ensure security when using most modern technologies. However, there is a growing threat to this fundamental piece of electronic infrastructure. Universal quantum computers, which were originally envisioned by Richard Feynman, have moved from being a theoretical future technology into one that could realistically be available in a matter of decades. In 1994, Peter Shor devised an algorithm that would run on a quantum computer that could be used to solve mathematical problems that formed the foundation of public-key cryptography. While Shor's algorithm clearly establishes that new mathematical problems must be found and studied that can admit efficient cryptographic protocols, it is equally important that the models in which we consider security are also updated to consider the possibility of a malicious adversary having a quantum computer. In the random-oracle model, a hash function is replaced by a truly random function that any relevant party is able to query. This model can enable security reductions where otherwise none are known. However, it has been noted that this model does not properly consider the possibility of a quantum computer. For this, we must instead consider the quantum random-oracle model. In this thesis, we explain the basics of quantum physics and quantum computation in order to give a complete motivation for the quantum random-oracle model. We explain many of the difficulties that may be encountered in the quantum random-oracle model, and how some of these problems may be solved. We then show prove three signature schemes secure in the quantum random-oracle model: the LMS hash-based scheme, TESLA, a lattice-based scheme, and the TOO transformation using chameleon hashes. The first two schemes are strong candidates for post-quantum standardization.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectcryptographyen
dc.subjectdigital signaturesen
dc.subjectpost-quantumen
dc.subjectrandom oraclesen
dc.subjectrandom-oracle modelen
dc.titleSignature Schemes in the Quantum Random-Oracle Modelen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorMenezes, Alfred
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages