UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Two successive calcium-dependent transitions mediate membrane binding and oligomerization of daptomycin and the related antibiotic A54145

Loading...
Thumbnail Image

Date

2016-09

Authors

Taylor, Robert
Butt, Khalida
Scott, Bradley
Zhang, TianHua
Muraih, Jawad K.
Mintzer, Evan
Taylor, Scott D.
Palmer, Michael

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Daptomycin and A54145 are homologous lipopeptide antibiotics that permeabilize the cell membranes of Gram-positive bacteria. Membrane permeabilization depends on the presence of both phosphatidylglycerol (PG) and calcium, and it involves the formation of oligomeric transmembrane pores that consist of approximately 6-8 subunits. We here show that each lipopeptide molecule binds two calcium ions in separable, successive steps. The first calcium ion causes the lipopeptide molecule to bind to the target membrane, and likely to form a loosely associated oligomer. Higher calcium concentrations induce binding of a second ion, which produces the more tightly associated and more deeply membrane-inserted final, functional form of the oligomer. Both calcium dependent steps are accompanied by fluorescence signals that indicate transition of specific amino acid residues into less polar environments, suggestive of insertion into the target membrane. Our findings agree with the earlier observation that two of the four acidic amino acid residues in the daptomycin molecule are essential for antibacterial activity. (C) 2016 Elsevier B.V. All rights reserved.

Description

The final publication is available at Elsevier via http://doi.org/10.1016/j.bbamem.2016.05.020 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Calorimetry, Fluorescence, Lipopeptides, Antibiotics, Lipid membranes

LC Keywords

Citation