Development of an Integrated Control Strategy Consisting of an Advanced Torque Vectoring Controller and a Genetic Fuzzy Active Steering Controller
Loading...
Date
2013-04-08
Authors
Jalali, Kiumars
Uchida, Thomas
McPhee, John
Lambert, Steve
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
SAE International
Abstract
The optimum driving dynamics can be achieved only when the tire forces on all four wheels and in all three coordinate directions are monitored and controlled precisely. This advanced level of control is possible only when a vehicle is equipped with several active chassis control systems that are networked together in an integrated fashion. To investigate such capabilities, an electric vehicle model has been developed with four direct-drive in-wheel motors and an active steering system. Using this vehicle model, an advanced slip control system, an advanced torque vectoring controller, and a genetic fuzzy active steering controller have been developed previously. This paper investigates whether the integration of these stability control systems enhances the performance of the vehicle in terms of handling, stability, path-following, and longitudinal dynamics. An integrated approach is introduced that distributes the required control effort between the in-wheel motors and the active steering system. Several test maneuvers are simulated to demonstrate the performance and effectiveness of the integrated control approach, and the results are compared to those obtained using each controller individually. Finally, the integrated controller is implemented in a hardware- and operator-in-the-loop driving simulator to further evaluate its effectiveness.
Description
Replicated with permission by SAE Copyright © 2017 SAE International. Further distribution of this material is not permitted without prior permission from SAE.