UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A Collapsing Method for Efficient Recovery of Optimal Edges

Loading...
Thumbnail Image

Date

2002

Authors

Hu, Mike

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In this thesis we present a novel algorithm, <I>HyperCleaning*</I>, for effectively inferring phylogenetic trees. The method is based on the quartet method paradigm and is guaranteed to recover the best supported edges of the underlying phylogeny based on the witness quartet set. This is performed efficiently using a collapsing mechanism that employs memory/time tradeoff to ensure no loss of information. This enables <I>HyperCleaning*</I> to solve the relaxed version of the Maximum-Quartet-Consistency problem feasibly, thus providing a valuable tool for inferring phylogenies using quartet based analysis.

Description

Keywords

Computer Science, Phylogenetics, Evolution, Quartet Method, Combinatorial Algorithm, Maximum Likelihood

LC Keywords

Citation