Low-Leakage ESD Power Supply Clamps in General Purpose 65 nm CMOS Technology
Loading...
Date
2017-01-20
Authors
Elghazali, Mahdi
Advisor
Sachdev, Manoj
Opal, Ajoy
Opal, Ajoy
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Electrostatic discharge (ESD) is a well-known contributor that reduces the reliability and yield of the integrated circuits (ICs). As ICs become more complex, they are increasingly susceptible to such failures due to the scaling of physical dimensions of devices and interconnect on a chip [1]. These failures are caused by excessive electric field and/or excessive current densities and result in the dielectric breakdown, electromigration of metal lines and contacts. ESD can affect the IC in its different life stages, from wafer fabrication process to failure in the field. Furthermore, ESD events can damage the integrated circuit permanently (hard failure), or cause a latent damage (soft failure) [2]. ESD protection circuits consisting of I/O protection and ESD power supply clamps are routinely used in ICs to protect them against ESD damage. The main objective of the ESD protection circuit is to provide a low-resistive discharge path between any two pins of the chip to harmlessly discharge ESD energy without damaging the sensitive circuits.
The main target of this thesis is to design ESD power supply clamps that have the lowest possible leakage current without degrading the ESD protection ability in general purpose TSMC 65 nm CMOS technology. ESD clamps should have a very low-leakage current and should be stable and immune to the power supply noise under the normal operating conditions of the circuit core. Also, the ESD clamps must be able to handle high currents under an ESD event. All designs published in the general purpose 65 nm CMOS technology have used the SCR as the clamping element since the SCR has a higher current carrying capability compared to an MOS transistor of the same area [3]. The ESD power supply clamp should provide a low-resistive path in both directions to be able to deal with both PSD and NDS zapping modes.
The SCR based design does not provide the best ESD protection for the NDS zapping mode (positive ESD stress at VSS with grounded VDD node) since it has two parasitic resistances (RNwell and RPsub) and one parasitic diode (the collector to base junction diode of the PNP transistor) in the path from the VSS to VDD. Furthermore, SCR-based designs are not suitable for application that exposed to hot switching or ionizing radiation [2]. In GP process, the gate oxide thickness of core transistors is reduced compared with LP process counterpart to achieve higher performance designs for high-frequency applications using 1 V core transistors and 2.5 V I/O option. The thinner gate oxide layer results in higher leakage current due to gate tunneling [4]. Therefore, using large thin oxide MOS transistors as clamping elements will result in a huge leakage. In this thesis, four power supply ESD clamps are proposed in which thick oxide MOS transistors are used as the main clamping element. Therefore, the low-leakage current feature is achieved without significantly degrading the ESD performance. In addition, the parasitic diode of the MOS transistors provides the protection against NSD-mode.
In this thesis, two different ESD power supply clamp architectures are proposed: standalone ESD power supply clamps and hybrid ESD power supply clamps. Two standalone clamps are proposed: a transient PMOS based ESD clamp with thyristor delay element (PTC), and a static diode triggered power supply (DTC). The standalone clamps were designed to protect the circuit core against ±125 V CDM stress by limiting the voltage between the two power rails to less than the oxide breakdown voltage of the core transistors, BVOXESD = 5 V. The large area of this architecture was the price for maintaining the low-leakage current and an adequate ESD protection. The hybrid clamp architecture was proposed to provide a higher ESD protection, against ±300 V CDM stress, while reducing the layout area and maintaining the low-leakage feature. In the hybrid clamp structure, two clamps are connected in parallel between the two power supply rails, a static clamp, and a transient clamp. The static clamp triggers first and starts to sink the ESD energy and then an RC network triggers the primary transient clamp to sink most of the ESD stress. Two hybrid designs were proposed: PMOS ESD power supply clamp with thyristor delay element and diodes (PTDC), and NMOS ESD power supply clamp with level shifter delay element and diode (NLDC).
Simulation results show that the proposed clamps are capable of protecting the circuit core against ±1.5 kV HBM and at least against ±125 V CDM stresses. The measurement results show that all of the proposed clamps are immune against false triggering, and transient induced latch-up. Furthermore, all four designs have responded favorably to the 4 V ESD-like pulse voltage under both chip powered and not powered conditions and after the stress ends the designs turned off. Finally, TLP measurement results show that all four proposed designs meet the minimum design requirement of the ESD protection circuit in the 65 nm CMOS technology (i.e. HBM protection level of ±1.5 kV ).
Description
Keywords
ElectroStatic Discharge (ESD), ESD Power Supply Clamp, Zapping modes, Transient ESD clamps, Static ESD Clamps, Hybrid ESD clamps