UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Investigating trophic ecology and dietary niche overlap among morphs of Lake Trout in Lake Superior

Loading...
Thumbnail Image

Date

2017-01-17

Authors

Hoffmann, Justin Michael

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Four morphs of Lake Trout (Salvelinus namaycush, Walbaum 1792) have been identified in Lake Superior: leans, siscowets, humpers, and redfins. In this comprehensive study, the trophic ecology of Lake Trout morphs were characterized using stomach content, fatty acid, and stable isotope data. Stomach content results indicated a predominately piscivorous diet for leans, siscowets, and redfins, whereas humper diets were comprised of 50% fish and 50% Mysis by mass. Humper and siscowets were most similar in their dietary fatty acid profiles, whereas redfins had the most distinct dietary fatty acid profile. Results from stable isotope analysis revealed some among-morph differences along a pelagic-profundal consumption gradient (34S), but there were no significant differences in trophic position (15N) or basal carbon sources among morphs (13C). Using the recently developed nicheROVER software package, 4-dimensional trophic niches for each morph were quantified using stable isotope ratios (δ13C, δ15N, and δ34S) and fatty acid profiles (30 dietary fatty acids, condensed to one axis). Humpers had the largest 4-dimensional niche regions of all four morphs, and redfins had the smallest. Pairwise probability of overlap among morphs in these four-dimensional niche regions was determined to be < 50% in most cases. Overall, stomach content results indicate that humpers diets were more planktivorous than the other morphs, consistent with previous research. Results of the niche overlap analysis suggests some degree of generalist feeding for all morphs. Better characterization of seasonal variation in diet using tracers that reflect more recent feeding (e.g., fatty acids, stomach contents, and/or stable isotope analyses performed on tissues that turnover more quickly than muscle) are needed to further elucidate among-morph differences and similarities in diet and trophic ecology.

Description

Keywords

Lake Trout, Morph, Fatty Acid, Niche

LC Keywords

Citation

Collections