Show simple item record

dc.contributor.authorSun, Duo
dc.date.accessioned2016-12-23 16:52:11 (GMT)
dc.date.available2016-12-23 16:52:11 (GMT)
dc.date.issued2016-12-23
dc.date.submitted2016-12-16
dc.identifier.urihttp://hdl.handle.net/10012/11136
dc.description.abstractConverting CO2-rich waste streams such as raw biogas, landfill gas and power plant flue gas into synthetic fuels and chemicals will reduce greenhouse gas emissions, and provide revenue at the same time. One option is to convert CO2 into CH4 by hydrogenation via Sabatier reaction. This synthetic methane is renewable if the H2 required for the reaction is generated via water electrolysis using solar and wind energy or hydroelectricity. However, to realize the potential of this approach, a number of technological challenges related to the Sabatier reactor design have to be resolved, including thermal management and catalyst deactivation. The high exothermic nature of the Sabatier reaction can lead to reactor overheating while high temperatures are unfavorable to the exothermic and reversible methanation process, resulting in low CO2 conversions and methane production. In addition, catalyst coking deactivation due to filamentous carbon accumulation caused by methane cracking at high temperature can also lead to low methane production and short operation period. A simulation-based study of a Sabatier reactor was performed in order to optimize the removal of heat, while maximizing CO2 conversion and CH4 production and minimizing deactivation at the same time. The heat exchanger type packed bed reactor with internal cooling by a molten salt was simulated using a transient, pseudo-homogeneous mathematical model. Reactor performance was evaluated in terms of CO2 conversion and CH4 yield. The simulation results showed that feed temperature, feed flow rate and molten salt flow rate are the crucial parameters affecting the reactor performance and catalyst activity. For the optimized operating conditions, the model predicts CO2 conversions and CH4 yields above 90% at high reactor throughputs, with space velocities up to 10,000 h-1. A preliminary techno-economic evaluation is provided and opportunities and challenges are outlined.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleSimulation-Based Analysis of a Sabatier Reactor for Conversion of CO2 into Renewable Natural Gasen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorSimakov, David
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages