UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Digitally-Assisted RF-Analog Self Interference Cancellation for Wideband Full-Duplex Radios

Loading...
Thumbnail Image

Date

2016-10-25

Authors

King, Kimberley Brynn

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The ever-increasing demand for more data from users is pushing the development of alternative wireless technologies to improve upon network capacity. Full-Duplex radios provide an exciting opportunity to theoretically double the available spectral efficiency of wireless networks by simultaneously transmitting and receiving signals in the same frequency band. The main challenge that is presented in the implementation of a full-duplex radio is the high power transmitter leaking to the sensitive receiver chain and masking the desired receive signal to be decoded. This transmitter leakage is referred to as self interference and it is required that this self interference signal be cancelled below the receiver noise floor to achieve the full benefits of a full-duplex radio. Cancellation of the self interference signal is realized through several techniques, categorized as passive suppression, digital cancellation, and analog cancellation. These methods all have their challenges in achieving the full amount of cancellation necessary and therefore all three techniques are typically employed in the system. In this thesis, a novel digitally assisted radio frequency (RF) analog self interference canceller is proposed to suppress the self interference signal before the receiver chain for wide modulation bandwidth signals. This canceller augments minimum complexity RF-analog interference cancellation hardware that uses an RF vector multiplier in combination with a flexible digital rational function finite impulse response filter. The simple topology reduces the number of impairments added to the system through the analog components and identifies the parameters of the proposed filter in a deterministic and single iteration algorithm. The hardware proof-of-concept prototype is built using off-the-shelf RF-analog components and demonstrates excellent cancellation performance. Using four TX test signals with modulation bandwidths of 20~MHz, 40~MHz, 80~MHz, and 120~MHz, the self interference canceller achieves a minimum of 50~dB, 47~dB, 42~dB, and 40~dB of cancellation respectively. This thesis reviews the previously proposed self interference cancellation topologies, system non-idealities that provide challenges for full-duplex implementation, and the realization of the proposed RF-analog self interference canceller.

Description

Keywords

Full-Duplex Self Interference

LC Keywords

Citation