Show simple item record

dc.contributor.authorSellaroli, Giuseppe 16:56:55 (GMT) 16:56:55 (GMT)
dc.description.abstractThis work focuses on non-compact groups and their applications to quantum gravity, mainly through the use of tensor operators. Non-compact groups appear naturally if the space-time is of Lorentzian signature, but can also have an important role in the Euclidean case, as will be shown. First, the mathematical theory of tensor operators for a Lie group is recast in a new way which is used to generalise the Wigner–Eckart theorem to non-compact groups. The result relies on the knowledge of the recoupling theory between finite-dimensional and infinite-dimensional irreducible representations of the group; here the previously unconsidered cases of the 3D and 4D Lorentz groups are investigated in detail. As an application, the Wigner–Eckart theorem is used to generalise the Jordan–Schwinger representation of SU(2) to both groups, for all representation classes. Next, the results obtained for the 3D Lorentz group are applied to (2+1) Lorentzian loop quantum gravity to develop an analogue of the well-known spinorial approach used in the Euclidean case. Tensor operators are used to construct observables and to generalise the Hamiltonian constraint introduced by Bonzom and Livine (2012) for 3D gravity to the Lorentzian case. The Ponzano–Regge amplitude is shown to be a solution of this constraint by recovering the (opportunely generalised) Biedenharn–Elliott relations. Finally, the focus is shifted on the intertwiner space based on SU(2) representations, widely used in loop quantum gravity. When working in the spinorial formalism, it has been shown that the Hilbert space of n-valent intertwiners with fixed total area is a representation of U(n). Here it is shown that the full space of all n-valent intertwiners forms an irreducible representation of the non-compact group SO*(2n). This fact is used to construct a new kind of coherent intertwiner state (in the sense of Perelomov). Although some of these states were known already, the majority of them was not until now; moreover, the underlying group structure was completely unknown. Hints of how these coherent states can be interpreted in the semi-classical limit as convex polyhedra are provided.en
dc.publisherUniversity of Waterlooen
dc.subjectloop quantum gravityen
dc.subjecttensor operatorsen
dc.subjectnon-compact groupsen
dc.subjectmathematical physicsen
dc.subjectquantum gravityen
dc.subjectjordan-schwinger representationen
dc.subjectcoherent statesen
dc.titleNon-compact groups, tensor operators and applications to quantum gravityen
dc.typeDoctoral Thesisen
dc.pendingfalse Mathematicsen Mathematicsen of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.comment.hiddenI implemented all the requested revisionsen
uws.contributor.advisorGirelli, Florian
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages