Show simple item record

dc.contributor.authorJonkman, Maarten
dc.date.accessioned2016-09-20 15:09:47 (GMT)
dc.date.available2016-09-20 15:09:47 (GMT)
dc.date.issued2016-09-20
dc.date.submitted2016
dc.identifier.urihttp://hdl.handle.net/10012/10875
dc.description.abstractUltra-low sub-threshold voltage research has become increasingly important with the recent shift in consumer electronics towards low power designs for mobile, wearable, and implantable technologies. These applications are able to trade-off speed for reduced power consumption and reduced minimum operating voltage. This thesis studies circuit design solutions that focus on achieving the lowest minimum operating voltages. These applications are likely to be ones where the supply voltage may come from energy harvesting sources that are only able to source ultra-low voltages. The logic circuit presented in this thesis is a modified implementation of differential cascade voltage switch logic (DCVSL). Differential logic has improved ultra-low voltage performance over static CMOS logic and the modification to DCVSL offers a logic structure that can implement multi-input AND/NAND and OR/NOR gates while maintaining a stack height of one. This logic circuit is referred in this thesis as MOD-DCVSL. The modification requires the use of capacitive boosting to allow for normal logic operation. The results of this thesis show that differential logic styles are able to perform at lower minimum operating voltages compared to static CMOS logic styles but at the cost of larger delay and power compared to static CMOS. On average the differential implementations could operate at a minimum supply voltage 5mV lower than CMOS for two input implementations and 10mV lower for three input implementations. The delay of differential implementations was approximately double for both two and three input implementations. The power of the differential implementations are approximately 20% higher than static CMOS for two input implementations but this gap is narrowed to approximately 10% for three input implementations, here the lower minimum operating voltages allowed for decreased power consumption. Due to the consistently lower delay, static CMOS had a lower power delay product than the differential logic. When comparing only the differential logic, MOD-DCVSL offered negligible difference for two input implementations but was able to improve delay by 7% and power by 11% in the three input implementations.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleModified Differential Cascode Voltage Switch Logic Optimized for Sub-threshold Voltage Operationen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorSachdev, Manoj
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages