UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Convergence Analysis of Generalized Primal-Dual Interior-Point Algorithms for Linear Optimization

Loading...
Thumbnail Image

Date

2002

Authors

Wei, Hua

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

We study the zeroth-, first-, and second-order algorithms proposed by Tuncel. The zeroth-order algorithms are the generalization of the classic primal-dual affine-scaling methods, and have a strong connection with the quasi-Newton method. Although the zeroth-order algorithms have the property of strict monotone decrease in both primal and dual objective values, they may not converge. We give an illustrative example as well as an algebraic proof to show that the zeroth-order algorithms do not converge to an optimal solution in some cases. The second-order algorithms use the gradients and Hessians of the barrier functions. Tuncel has shown that all second-order algorithms have a polynomial iteration bound. The second-order algorithms have a range of primal-dual scaling matrices to be chosen. We give a method to construct such a primal-dual scaling matrix. We then analyze a new centrality measure. This centrality measure appeared in both first- and second-order algorithms. We compare the neighbourhood defined by this centrality measure with other known neighbourhoods. We then analyze how this centrality measure changes in the next iteration in terms of the step length and some other information of the current iteration.

Description

Keywords

Mathematics, Primal-dual interior-point methods, Linear Optimization, Convergence, Polynomial algorithm

LC Keywords

Citation