Show simple item record

dc.contributor.authorLun, Nathan
dc.date.accessioned2016-08-31 19:23:14 (GMT)
dc.date.available2016-08-31 19:23:14 (GMT)
dc.date.issued2016-08-31
dc.date.submitted2016
dc.identifier.urihttp://hdl.handle.net/10012/10767
dc.description.abstractMedium-Manganese (MMn) third generation advanced high strength steel (AHSS) was joined using laser welding. The effects of rapid heating and cooling thermal cycles imposed by laser welding on MMn steel was investigated. Microhardness profiles of large heat input diode laser bead-on-plate (BoP) welds found that the steel was not susceptible to heat affected zone (HAZ) softening. The peak temperature above the upper critical temperature (A3) was determined to have a significant effect on the microstructure and morphology of austenite in the HAZ. The solidification mode of the diode laser fusion zone (FZ) was primarily columnar dendritic in nature and microsegregation of Mn to the inter-dendritic spaces was observed. Higher energy density fiber laser welding was used to produce laser welded blanks (LWB) containing MMn steel, high strength low alloy (HSLA) and dual-phase (DP) steel. Columnar dendritic solidification was also observed in fiber laser welds of MMn steel. Dissimilar welds containing HSLA and DP980 were found to produce a martensitic FZ with a fraction of stable austenite. HAZ softening was also absent from microhardness profiles of fiber laser welded MMn steel due to the absence of pre-existing martensite and austenite grain growth. Sub-sized similar MMn steel laser welded tensile blanks were observed to exhibit high joint efficiency with respect to the BM. Tensile testing conducted on dissimilar blanks of HSLA and DP980 were observed to fracture in their respective BM due to a difference in yield and ultimate tensile strength. Formability of similar MMn steel LWB was limited, but welding to HSLA or DP980 improved the LWB formability. LWBs of MMn steel were investigated for potential as a new press hardened steel (PHS) chemistry. Standard size tensile geometries of MMn steel LWB showed that the FZ was sensitive to loading conditions where large strains begin to accumulate. Heat treating and quenching a LWB at an inter-critical annealing temperature showed that the austenite reverse transformation can occur in the laser weld FZ. Laser weld joint ductility was determined to significantly improve by heat treating at a lower temperature (700 °C) and a shorter time (3-4 minutes) compared to conventional boron press hardened steels.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectLaser weldingen
dc.subjectMedium-Manganese Steelen
dc.subjectMicrostructureen
dc.subjectMicrohardnessen
dc.subjectX-Ray Diffractionen
dc.subjectFormabilityen
dc.subjectHeat treatmenten
dc.titleLaser Welding of Medium-Manganese Steelen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorZhou, Norman
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages