Show simple item record

dc.contributor.authorKumar, Devinder
dc.date.accessioned2016-08-25 13:23:56 (GMT)
dc.date.available2016-08-25 13:23:56 (GMT)
dc.date.issued2016-08-25
dc.date.submitted2016
dc.identifier.urihttp://hdl.handle.net/10012/10691
dc.description.abstractVisual based place recognition involves recognising familiar locations despite changes in environment or view-point of the camera(s) at the locations. There are existing methods that deal with these seasonal changes or view-point changes separately, but few methods exist that deal with these kind of changes simultaneously. Such robust place recognition systems are essential to long term localization and autonomy. Such systems should be able to deal both with conditional and viewpoint changes simultaneously. In recent times Convolutional Neural Networks (CNNs) have shown to outperform other state-of-the art method in task related to classi cation and recognition including place recognition. In this thesis, we present a deep learning based planar omni-directional place recognition approach that can deal with conditional and viewpoint variations together. The proposed method is able to deal with large viewpoint changes, where current methods fail. We evaluate the proposed method on two real world datasets dealing with four di erent seasons through out the year along with illumination changes and changes occurred in the environment across a period of 1 year respectively. We provide both quantitative (recall at 100% precision) and qualitative (confusion matrices) comparison of the basic pipeline for place recognition for the omni-directional approach with single-view and side-view camera approaches. The proposed approach is also shown to work very well across di erent seasons. The results prove the e cacy of the proposed method over the single-view and side-view cameras in dealing with conditional and large viewpoint changes in di erent conditions including illumination, weather, structural changes etc.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectDeep learningen
dc.subjectplace recognitionen
dc.subjectCNNen
dc.titleDeep Learning Based Place Recognition for Challenging Environmentsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degree.disciplineSystem Design Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorClausi, David
uws.contributor.advisorWaslander, Steven
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages