Energy Harvesting in Flexible and Semi-transparent Hydrogenated Amorphous Silicon Solar Cells

Loading...
Thumbnail Image

Date

2016-08-19

Authors

Yang, Ruifeng

Advisor

Sazonov, Andrei

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The goal of this study is to design, characterize, and fabricate efficient hydrogenated amorphous silicon (a-Si:H) photovoltaic (PV) modules, and semi-transparent solar cells on thin, mechanically flexible, optically transparent plastic substrates for energy harvesting applications. The cells are deposited on thin flexible plastics at low temperature (120~ 150 °C). In the first part of study, a-Si:H n-i-p solar cells were fabricated using a plasma enhanced chemical vapor deposition (PECVD) and the deposition conditions were optimized to maximize their efficiency. To improve light absorption, we engineered the front window layer by optimizing p-layer thickness and bandgap (Eg). The best a-Si:H n-i-p solar cell showed open circuit voltage (Voc) of 0.67 V, short circuit current density (Jsc) of 7.92 mA/cm2, fill factor (FF) of 53.73 %, and energy conversion efficiency of 2.86 %. Using developed deposition recipes, the a-Si:H PV modules were designed and fabricated on a 10 by 10 cm2 polyethylene-naphthalate (PEN) substrate which consists of 72 rectangular cells. The sub-cells were connected in series forming eight strings with connection pads at the ends, so that the strings of 18 sub-cells were connected in parallel using the external blocking diodes. The typical a-Si:H PV module showed Voc of 12.78 V, Jsc of 8 mA/cm2, FF of 53.8 %, and average efficiency of 3.05 %. The PV module performance is similar to that of individual solar cells, which means good scalability of our module fabrication process. In the second part, a-Si:H n-i-p solar cells were inverted to fabricate a-Si:H p-i-n solar cells. In this device structure, p-type buffer-layer was introduced to improve the interface between aluminum doped zinc oxide (AZO)/p-layer. The optimum device showed Voc of 0.885 V, Jsc of 8.88 mA/cm2, FF of 52.01 %, and efficiency of 4.09 %. In the last part of this study, semi-transparent solar cells were fabricated both on glass and plastic substrates to demonstrate feasibility of building integrated photovoltaics (BIPV), based on the a-Si:H p-i-n cells in the second part. To overcome the mechanical stress inside films between AZO and plastic, the barrier-layer coating was used to prevent the delamination which is frequently encountered between plastic substrate and transparent conductive oxide (TCO) layer. Our semi-transparent a-Si:H solar cells showed the efficiency of 4.98 % and 4.77 % for the cells fabricated on glass and plastic substrates, respectively. In addition, the semi-transparent a-Si:H p-i-n solar cell was also used as radiation detector within the visible part of the spectrum. From the Ne spectral lines, the micro-plasma spectral from radiation detector obtained response comparable with fiber optic detector.

Description

Keywords

LC Keywords

Citation