Show simple item record

dc.contributor.authorShaverdian, Ararat
dc.date.accessioned2016-04-29 15:22:07 (GMT)
dc.date.available2016-04-29 15:22:07 (GMT)
dc.date.issued2016-04-29
dc.date.submitted2016-04-26
dc.identifier.urihttp://hdl.handle.net/10012/10423
dc.description.abstractNetwork densification through heterogeneous networks (HetNets) is considered as a promising paradigm to address the ever increasing mobile users’ data demands in 5G networks. A HetNet consists of macro cells (each with a macro base station) overlaid with a number of small cells (each with a low-power base station) and has been shown to significantly improve the network capacity when supported by carefully designed radio resource management (RRM) techniques. RRM is typically studied via a joint optimisation problem over three network processes, namely, resource allocation (RA), user association (UA) and user scheduling (US), and is the focus of this thesis. Our first objective is to characterise the optimal HetNet performance by jointly optimising these three processes through a unified framework under different channel deployment scenarios. Towards this, we focus on two RA schemes, namely, partially shared deployment (PSD) and co-channel deployment with almost blank subframes (ABS), proposed by 3GPP for future HetNets. In the first part of the thesis, we revisit a unified optimisation framework under PSD that allows us to configure the network parameters (e.g., number of channels per-cell and power per-channel) and allocate optimal throughputs to users in a fair manner. The framework under consideration is based on a snapshot model where, in each snapshot, the number of users and channel gains are assumed to be fixed and known. Although the previous study on this framework provides many interesting engineering insights, it is primarily based on two wrong assumptions in terms of channel modelling and US which we correct in our work. We also revisit a similar framework but under ABS and conduct a thorough comparative study between ABS and PSD. We first show that the U+03B1-fair scheduling problem under ABS is generally much more involved than that under PSD for U+03B1 U+2260 1. To verify whether the US complexities involved from deploying ABS are justifiable, we compare the throughput performance of the two schemes under a static setting, where the number of users in each snapshot is assumed to be fixed. Our results indicate that PSD outperforms ABS for different choices of U+03B1-fair and under different HetNet configurations. In the second part of the thesis, we further study our frameworks under a dynamic setting and continue our comparisons between the two RA schemes under different service-time models. The dynamic setting, as well as reaffirming the upper-hand of PSD, provides a number of new insights, most importantly the fact that the conventional physical-layer based UA schemes do not always work well. Motivated by this observation, we further explore the problem of UA under PSD with the objective of improving an existing online UA scheme. We show that when users are periodically triggered to re-associate (on an individual basis), the online UA scheme can significantly improve the system performance.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectAlmost Blank Subframes (ABS)en
dc.subjectPartially Shared Deployment (PSD)en
dc.subjectResource Allocationen
dc.subjectHetNetsen
dc.titleA Comparative Study of Resource Allocation Schemes in Heterogeneous Cellular Networks on the Downlinken
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorRosenberg, Catherine
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages