Pure Mathematics
Permanent URI for this collectionhttps://uwspace.uwaterloo.ca/handle/10012/9932
This is the collection for the University of Waterloo's Department of Pure Mathematics.
Research outputs are organized by type (eg. Master Thesis, Article, Conference Paper).
Waterloo faculty, students, and staff can contact us or visit the UWSpace guide to learn more about depositing their research.
Browse
Browsing Pure Mathematics by Subject "Abstract Harmonic Analysis"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Mind the GAP: Amenability Constants and Arens Regularity of Fourier Algebras(University of Waterloo, 2023-08-28) Sawatzky, JohnThis thesis aims to investigate properties of algebras related to the Fourier algebra $A(G)$ and the Fourier-Stieltjes algebra $B(G)$, where $G$ is a locally compact group. For a Banach algebra $\cA$ there are two natural multiplication operations on the double dual $\cA^{**}$ introduced by Arens in 1971, and if these operations agree then the algebra $\cA$ is said to be Arens regular. We study Arens regularity of the closures of $A(G)$ in the multiplier and completely bounded multiplier norms, denoted $A_M(G)$ and $A_{cb}(G)$ respectively. We prove that if a nonzero closed ideal in $A_M(G)$ or $A_{cb}(G)$ is Arens regular then $G$ must be a discrete group. Amenable Banach algebras were first studied by B.E. Johnson in 1972. For an amenable Banach algebra $\cA$ we can consider its amenability constant $AM(\cA) \geq 1$. We are particularly interested in collections of amenable Banach algebras for which there exists a constant $\lambda > 1$ such that the values in the interval $(1,\lambda)$ cannot be attained as amenability constants. If $G$ is a compact group, then the central Fourier algebra is defined as $ZA(G) = ZL^1(G) \cap A(G)$ and endowed with the $A(G)$ norm. We study the amenability constant theory of $ZA(G)$ when $G$ is a finite group.Item On Amenability Properties and Coideals of Quantum Groups(University of Waterloo, 2022-07-27) Anderson-Sackaney, BenjaminWe study amenability type properties of locally compact quantum groups and subobjects of quantum groups realized as submodules of their von Neumann algebras. An important class of such subobjects are the coideals, which offer a way of defining a “quasisubgroup” for locally compact quantum groups. Chapters 3, 4, and 5 are based on [3], [2], and [4] respectively. In Chapter 3, we establish the notion of a non-commutative hull of a left ideal of L1(Gb) for a discrete quantum group G. Non-commutative spectral synthesis is defined too, and is related to a certain Ditkin’s property at infinity, allowing for a description of the closed left ideals of L1(Gb) for many known compact quantum groups Gb from the literature. We apply this work to study weak∗ closed in ideals in the quantum measure algebra of coamenable compact quantum groups and certain closed ideals in L1(Gb) which admit bounded right approximate identities in relation to coamenability of Gb (Theorem 3.3.14). In Chapter 4, we study relative amenability and amenability of coideals of a discrete quantum group, and coamenability of coideals of a compact quantum group. Making progress towards answering a coideal version of a question of [65], we prove a duality result that generalizes Tomatsu’s theorem [122] (lemmas 4.4.14 and 4.1.9). Consequently, we characterize the reduced central idempotent states of a compact quantum group (Corollary 4.1.2). In Chapter 5, we study tracial and G-invariant states of discrete quantum groups. A key result here is that tracial idempotent states are equivalently G-invariant idempotent states (Proposition 5.3.12). A consequence is the resolution of an open problem in [96, 22] in the discrete case, namely that amenability of G is equivalent to nuclearity of and the existence of a tracial state on Cr(Gb) (Corollary 5.3.14). We also obtain that simplicity of Cr(Gb) implies no G-invariant states exist (Corollary 5.3.15). Finally, we prove existence and uniqueness results of traces in terms of the cokernel, HF , of the Furstenberg boundary and the canonical Kac quotient of Gb. In Chapter 6, we develop a notion of operator amenability and operator biflatness of the action of a completely contractive Banach algebra on another completely contractive Banach algebra. We study these concept on various actions defined for locally compact quantum groups and their quantum subgroups, and relate them to usual operator amenability and other related properties, including amenability, coamenability, and compactness.