Pure Mathematics
Permanent URI for this collectionhttps://uwspace.uwaterloo.ca/handle/10012/9932
This is the collection for the University of Waterloo's Department of Pure Mathematics.
Research outputs are organized by type (eg. Master Thesis, Article, Conference Paper).
Waterloo faculty, students, and staff can contact us or visit the UWSpace guide to learn more about depositing their research.
Browse
Browsing Pure Mathematics by Author "Csima, Barbara"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Computability Theory and Some Applications(University of Waterloo, 2019-07-15) Deveau, Michael; Csima, BarbaraWe explore various areas of computability theory, ranging from applications in computable structure theory primarily focused on problems about computing isomorphisms, to a number of new results regarding the degree-theoretic notion of the bounded Turing hierarchy. In Chapter 2 (joint with Csima, Harrison-Trainor, Mahmoud), the set of degrees that are computably enumerable in and above $\mathbf{0}^{(\alpha)}$ are shown to be degrees of categoricity of a structure, where $\alpha$ is a computable limit ordinal. We construct such structures in a particularly useful way: by restricting the construction to a particular case (the limit ordinal $\omega$) and proving some additional facts about the widgets that make up the structure, we are able to produce a computable prime model with a degree of categoricity as high as is possible. This then shows that a particular upper bound on such degrees is exact. In Chapter 3 (joint with Csima and Stephenson), a common trick in computable structure theory as it relates to degrees of categoricity is explored. In this trick, the degree of an isomorphism between computable copies of a rigid structure is often able to be witnessed by the clever choice of a computable set whose image or preimage through the isomorphism actually attains the degree of the isomorphism itself. We construct a pair of computable copies of $(\omega, <)$ where this trick will not work, examine some problems with decidability of the structures and work with $(\omega^2, <)$ to resolve them by proving a similar result. In Chapter 4, the effectivization of Walker's Cancellation Theorem in group theory is discussed in the context of uniformity. That is, if we have an indexed collection of instances of sums of finitely generated abelian groups $A_i \join G_i \cong A_i \join H_i$ and the code for the isomorphism between them, then we wish to know to what extent we can give a single procedure that, given an index $i$, produces an isomorphism between $G_i$ and $H_i$. Finally, in Chapter 5, several results pertaining to the bounded Turing degrees (also known as the weak truth-table degrees) and the bounded jump are investigated, with an eye toward jump inversion. We first resolve a potential ambiguity in the definition of sets used to characterize degrees in the bounded Turing hierarchy. Then we investigate some open problems related to lowness and highness as it appears in this realm, and then generalize a characterization about reductions to iterated bounded jumps of arbitrary sets. We use this result to prove the non-triviality of the hierarchy of successive applications of the bounded jump above any set, showing that the problem of jump inversion must be non-trivial if it is true in any relativized generality.Item Degrees of Categoricity and the Isomorphism Problem(University of Waterloo, 2019-06-12) Mahmoud, Mohammad; Csima, BarbaraIn this thesis, we study notions of complexity related to computable structures. We first study degrees of categoricity for computable tree structures. We show that, for any computable ordinal $\alpha$, there exists a computable tree of rank $\alpha+1$ with strong degree of categoricity ${\bf 0}^{(2\alpha)}$ if $\alpha$ is finite, and with strong degree of categoricity ${\bf 0}^{(2\alpha+1)}$ if $\alpha$ is infinite. For a computable limit ordinal $\alpha$, we show that there is a computable tree of rank $\alpha$ with strong degree of categoricity ${\bf 0}^{(\alpha)}$ (which equals ${\bf 0}^{(2\alpha)}$). In general, it is not the case that every Turing degree is the degree of categoricity of some structure. However, it is known that every degree that is of a computably enumerable (c.e.) set\ in and above $\mathbf{0}^{(\alpha)}$, for $\alpha$ a successor ordinal, is a degree of categoricity. In this thesis, we include joint work with Csima, Deveau and Harrison-Trainor which shows that every degree c.e.\ in and above $\mathbf{0}^{(\alpha)}$, for $\alpha$ a limit ordinal, is a degree of categoricity. We also show that every degree c.e.\ in and above $\mathbf{0}^{(\omega)}$ is the degree of categoricity of a prime model, making progress towards a question of Bazhenov and Marchuk. After that, we study the isomorphism problem for tree structures. It follows from our proofs regarding the degrees of categoricity for these structures that, for every computable ordinal $\alpha>0$, the isomorphism problem for trees of rank $\alpha$ is $\Pi_{2\alpha}$-complete. We also discuss the isomorphism problem for pregeometries in which dependent elements are dense and the closure operator is relatively intrinsically computably enumerable. We show that, if $K$ is a class of such pregeometries, then the isomorphism problem for the class $K$ is $\Pi_3$-hard. Finally, we study the Turing ordinal. We observed that the definition of the Turing ordinal has two parts each of which alone can define a specific ordinal which we call the upper and lower Turing ordinals. The Turing ordinal exists if and only if these two ordinals exist and are equal. We give examples of classes of computable structures such that the upper Turing ordinal is $\beta$ and the lower Turing ordinal is $\alpha$ for all computable ordinals $\alpha<\beta$.Item Notions of Complexity Within Computable Structure Theory(University of Waterloo, 2023-08-28) MacLean, Luke; Csima, BarbaraThis thesis covers multiple areas within computable structure theory, analyzing the complexities of certain aspects of computable structures with respect to different notions of definability. In chapter 2 we use a new metatheorem of Antonio Montalb\'an's to simplify an otherwise difficult priority construction. We restrict our attention to linear orders, and ask if, given a computable linear order $\A$ with degree of categoricity $\boldsymbol{d}$, it is possible to construct a computable isomorphic copy of $\A$ such that the isomorphism achieves the degree of categoricity and furthermore, that we did not do this coding using a computable set of points chosen in advance. To ensure that there was no computable set of points that could be used to compute the isomorphism we are forced to diagonalize against all possible computable unary relations while we construct our isomorphic copy. This tension between trying to code information into the isomorphism and trying to avoid using computable coding locations, necessitates the use of a metatheorem. This work builds off of results obtained by Csima, Deveau, and Stevenson for the ordinals $\omega$ and $\omega^2$, and extends it to $\omega^\alpha$ for any computable successor ordinal $\alpha$. In chapter 3, which is joint work with Alvir and Csima, we study the Scott complexity of countable reduced Abelian $p$-groups. We provide Scott sentences for all such groups, and show some cases where this is an optimal upper bound on the Scott complexity. To show this optimality we obtain partial results towards characterizing the back-and-forth relations on these groups. In chapter 4, which is joint work with Csima and Rossegger, we study structures under enumeration reducibility when restricting oneself to only the positive information about a structure. We find that relations that can be relatively intrinsically enumerated from such information have a definability characterization using a new class of formulas. We then use these formulas to produce a structural jump within the enumeration degrees that admits jump inversion, and compare it to other notions of the structural jump. We finally show that interpretability of one structure in another using these formulas is equivalent to the existence of a positive enumerable functor between the classes of isomorphic copies of the structures.